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Abstract. The data of S C Greer on the difference of volume fractions in the coexisting 
phases of the isobutyric acid-water system are analysed in terms of our equation of state, 
which is a model for the crossover from the critical region to a van der Waals-like 
behaviour. Our results provide evidence of the importance of non-scaling correction 
terms even in a small range close to the critical point. Correspondingly the effective 
critical index describing the coexistence curve shows a significant departure from its 
asymptotic value. 

1. Introduction 

Recently our knowledge of critical phenomena has reached the point where a detailed 
comparison can be made between theoretical models and accurate experimental data. 

From the theoretical side the recently developed techniques of resummation of the 
perturbation series in powers of the coupling constant allow a precise estimate of 
critical indices for Ising-like systems in three dimensions (Le Guillou and Zinn-Justin 
1977). In particular the critical exponents relevant to this work are p = 0.325 * 0.001 
for the coexistence curve and A I  = 0.493 f 0.007 for the leading correction to scaling. 
Previous calculations gave p = 0.328 (Kadanoff er a1 1976, see also Greer 1976) and 
p = 0.320+0.016 (Baker et a1 1976). These calculations are to be compared with 
p = 0.312*0.005 from series expansions (Domb 1974). 

In what follows we limit ourselves to consideration of the coexistence curve. 
For these results to be useful in the interpretation of experimental data, one should 

be able to give a reasonable estimate of the size of the region where a single 
power-law is valid. In fact, especially in fluids (Levelt Sengers et a1 1976), the use of 
the leading power to fit the data in larger regions usually leads to values of p = 0.35, 
higher than the theoretical expected values (Levelt Sengers et a1 1976). In addition 
the index decreases when considering smaller regions around the critical point (Estler 
et a1 1975, Hocken and Moldover 1976). Shrinking the range of temperatures 
considered has therefore been the first attempt to determine the true leading index. 

An alternative to this method has been used recently (Greer 1976, Ley-Koo and 
Green 1977) adapting to fluids the model introduced by Wegner (1972) which 
describes the lowest-order corrections to simple scaling. The most important result of 
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the quoted works is that the fitted critical index p tends to the theoretically calculated 
value on increasing the number of correction terms. A slightly different point of view 
is adopted by Balfour et a1 (1978) who fix the critical indices to the renormalisation 
group values, obtaining quite good results with a parametric equation state which 
includes the first correction to scaling. Moreover the renormalisation group approach, 
to our knowledge, has not been applied to the calculation of the amplitudes of the 
non-scaling terms; as a consequence they must be considered as free parameters to be 
fitted. We will discuss these results in more detail in 8 4. 

At this point one must note that Ley-Koo and Green (1977), in their analysis of 
the SF6 data of Weiner et a1 (1974), stress that the series of terms predicted by 
Wegner has a relatively small range of applicability which can be related to a crossover 
to a mean-field behaviour. In fact they use a van der Waals-like equation of state for 
the data with (Tc -  T) /Tc>2 x lo-* (T,  is the critical temperature). Consequently, 
once the necessity of extending simple scaling has been made clear, it is apparent that 
one needs a global equation of state capable of describing the asymptotic critical 
regime, the mean-field behaviour and the crossover between the two regions. As we 
already noted, the renormalisation group has not yet been applied to the detailed 
calculation of this global behaviour. 

Recently, we proposed a model of this kind which applies to Ising-like systems (de 
Pasquale and Tombesi 1977). The model is essentially based on ideas which come 
from the renormalisation group approach to critical phenomena (i.e. the fixed point 
and the expansion in E = 4 - d ,  where d is the dimensionality) although we use a 
somewhat different technique, the so called skeleton expansion. The model cor- 
responds to the first step of this expansion which already gives a partial resummation 
of the series in E .  Its main features are summarised in 8 2 .  Our most important result 
is the fact that we are able to give a closed form for the equation of state both near the 
critical point and far from it, where a ‘classical’ type of behaviour is expected. At the 
same time we obtain values of the critical indices and the explicit form of the crossover 
function. When expanded in reduced temperature, the latter gives the same 
functional form as that used by Wegner (1972) close to the critical point, with the 
difference that the amplitudes of the non-asymptotic terms all depend on a single 
non-universal parameter. This in turn implies some universal relations among the 
amplitudes themselves. 

In P 3 we analyse the accurate coexistence curve data of Greer (1976) for the 
binary liquid system isobutyric acid-water with our  global equation of state. Although 
these data only cover a small range around the critical point, we find evidence for the 
need of ‘effective’ correction terms to simple scaling. In fact the critical index which 
describes the coexistence curve shows a 30% deviation from its asymptotic value. 

In § 4 we discuss our results and compare them with similar analyses of fluid 
systems, where it it shown that discrepancies of the exponents with the theoretically 
calculated values may be attributed to an overestimation of the size of the asymptotic 
region. 

2. The global equation of state 

2.1. The model 

The problem is the derivation of a parametric equation of state from a statistical 
model of a critical system. Our model Hamiltonian (de Pasquale and Tombesi 1977) 
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is a slightly modified version of the usual Landau-Ginzburg-Wilson Hamiltonian for 
an Ising system (Wilson and Kogut 1974). The partition functional is 

~ ( h ,  J)= J d$J dm exp( -J d d x [ $ ( V $ ( x ) ) 2 + $ g a ( x ) $ 2 ( x )  

(2.1) 

which reduces to the usual one with a functional integration over the field m ( x ) .  The 
use of the dummy field a ( x )  (Halperin et a1 1974, Coleman et a1 1974) describing the 
weak fluctuations of the system, i.e. the energy fluctuations, allows the introduction of 
the coupled external field J ( x )  which has the physical meaning of distance in 
temperature from the critical point. The strong fluctuations of the order parameter 
are described by the field $ ( x )  coupled to the external magnetic field h ( x ) ;  g is the 
usual bare coupling constant. 

By means of a Legendre transformation over the partition function we get the 
functional r(4, J) which allows the definition of the one-particle irreducible Green 
functions (or vertices): 

r ( 4 , J ) = l n z ( h , J ) - I  ddxh(x)4(x) (2.2) 

with the averaged field 4(x): 

The vertices are 

The results we will use in the following were obtained by de Pasquale and Tombesi 
(1977); we confine ourselves here to a brief account of the procedure we used. The 
important point is to establish a relation among the 'natural' thermodynamic variables 
h and J associated with the strong and weak fluctuations and the variables charac- 
teristic of the parametric representation of the equation of state (Schofield 1969). In 
our scheme this is accomplished with the use of the skeleton expansion (de Pasquale 
and Tombesi 1972, Tsuneto and Abrahams 1973, Ginzburg 1974) which allows us to 
establish self-consistent functional relations among the vertices. Our approximation is 
checked in the limit of dimensionality close to 4 ( E  = 4 - d + 0 ) .  The topological 
structure of the skeleton expansion, together with the usual approximation of zero 
momentum transfer, allows the use of differential relations instead of functional 
differential ones. These equations involve the effective coupling constants U and U 
defined through the vertices 

as a function of the variables 4 and J. A crucial point is then the inversion of the 
differential equation to get 4 and J in terms of U and U, which in the model play the 
role of the variables in the parametric representation of the equation of state. I t  is in 
fact easy to verify that on varying U from 0 to 1 the system goes from critical 
conditions to a regime of independent fluctuations (i.e. a mean-field or van der 
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Waals-like behaviour). At the same time the variable v defines the different paths of 
approach to critical conditions. Thus our model gives a set of generalised parametric 
equations since it determines not only the asymptotic but the whole global behaviour 
up to 'classical' conditions. I t  must be noted that the approximation used in the 
inversion procedure may be checked to eLery order in E ,  for each order giving a set of 
well defined differential equations. The integration of these equations introduces a 
partial resummation of the E expansion, in fact it gives /3 = (1 - & ) / ( 2 - - f e )  for the 
asymptotic value of the critical exponent for the coexistence curve. 

In conclusion the first step of the skeleton expansion gives the following explicit 
form of the parametric equation of state: 

(2 .6a)  

(2 .6b)  
h / N h  = G3/'8(1 - e2)(1 - U)(3/a) - fu-3 /r  ( 2 . 6 ~ )  

where the usual parametric variable O 2  = v /3u  has been introduced. t = ( T  - Tc)/Tc is 
the reduced temperature and N,, Nh are normalisation constants which allow the 
interpretation of 4 and h as the physical order parameter and external field respec- 
tively. G is related to the bare coupling constant. 

2.2. Crossover function for the coexistence curve 

The two branches of the coexistence curve are given for 8 = * l ,  so that from the 
parametric equation of state (equations (2.6)) one gets for the order parameter 
difference in the two coexisting phases A 4  and the reduced temperature t :  

(2 .7a)  

(2 .76)  

This is the functional form for the coexistence curve which can be made explicit in the 
temperature for the case of physical interest E = 1, i.e. 

(2.9) 

Although the preceding equation would be sufficient, the expression of A 4  as a 
function of t is more suitable for the analysis of experimental data, since the 
measurements are performed at fixed temperature. Moreover knowledge of Ad(?) 
allows a direct comparison with the renormalisation group models (Wegner 1972). To 
this end the following transformation of variables is useful: 

(2.10) 

with the asymptotic exponents given by p = 0.3, A ,  = 0.6. Then the coexistence curve 
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assumes the simple form 

(2.11) 6 y - y = 5 x  

from which the following Lagrange expansion (Abramowitz and Stegun 1965) of y as 
a function of x can be easily obtained: 

oc 

y ( X ) = l +  AkXk 
k = l  

with the coefficients given by 

(2.12) 

Ak =- - ( y  + y + y + y + y s ) - k  

(k - 1 + a i  + U ~ + C Z ~  + ~ 4 + ~ 5 ) !  a l + a 2 + a , + a 4 + a 5  
( -1 )  

5 k k !  al!ar!a3!a4!as! = c  
alaza3a4a5 

x 22a2+a43a1+a3+a4 5 - 0 4 - 0 5  (2.13) 

summed with the condition a l + 2 a 2 + 3 a 3 + 4 a 4 + 5 a s =  k - 1 .  The expansion up to 
the sixth order is given explicitly by 

y = 1 + X  - 3x2+ 14x3 - 7 8 x 4 + 4 7 8 4 x 5  - 3125x6+.  . . (2.14) 

and in terms of universal variables 

= ( - t * ) ' [1  +0~4(-t*)A~-0~2(-t*)2"'+0~176(-t*)3"'-0~1904(-t*)4A1 

+0*2296(-t*)531-0*2962(-t*)6A1 + .  . .] (2.15) 

with 

(2.16) 

The expression (2.15) of 
data.  

as a function of T has been used to fit the experimental 

A t  this point we note some features of our  equations: 
(i) A comparison with Wegner's (1972) results shows immediately that the 

expansion of our  crossover function for the coexistence curve is of the same functional 
form. We  are able to get the values of the amplitudes of the non-asymptotic terms; in 
particular B2 turns out to be negative, in agreement with the sign obtained when 
fitting fluid systems (Greer 1976, Ley-Koo and Green 1977, Balfour et a1 1978). 

(ii) The  correction terms to asymptotic scaling only depend on the parameter G, 
so that one  can in general say that the ratio Bk/B: is a universal quantity. As a 
consequence one  can represent the experimental data on a universal plot it*, Ad*). 

(iii) The  use of the scaling variables x and y confirms the effect of the correction 
terms. In fact asymptotic scaling corresponds to y = 1 ,  the first non-scaling term to 
y = 1 + x  and so on .  
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A particularly suitable tool to confirm the crossover phenomenon is the intro- 
duction of an effective critical index pefft (Riedel and Wegner 1974), which is given by 

(2.17) 

where y ( x )  is given implicitly by equation (2.11) or by the expansion equation (2.14). 
It is apparent that when x + 0 (i.e. the critical point) Peff tends to its asymptotic value 
p = 0.3 while for large values of x it tends to the 'classical value' pefi = p +$Al  = 0.5. 
Surprisingly our analysis in 0 3 will show a variation of p from 0.30 to 0.38 even if the 
maximum distance from the critical point is only - t  = lo-'. 

3. Analysis of isobutyric acid-water data 

In order to test our global equation of state we analysed the published data of Greer 
(1976). We use the two runs reported there and refer to the original paper for the 
details of the experiment. 

One of the most important results of the analysis performed by Greer is that the 
best choice for the order parameter of the binary liquid system isobutyric acid-water is 
the volume fraction of one of the components in the mixture. For this reason we 
assumed the order parameter q5 which appears in our model to be proportional, 
through the constant N,, to the volume fraction. 

The best fit to the data was performed mainly with a modified version of the 
general non-linear fitting program CURFIT reported by Bevington (1969), and only 
occasionally, and whenever possible, checked with a linear fitting program. We 
started reproducing the fit to the simple power law reported by Greer and getting the 
same results within statistical error. Then we analysed the data with our equation of 
state, both in the explicit form t = t(q5) (equation (2.9)) and in the form q5 = q5(t) of 
equation (2.15). In both cases we got the same results for the free parameters T,, G 
and N ,  which are reported in table 1 together with their estimated errors (three times 
the standard deviation) and the average standard deviation of the data 6. The fits we 
obtain seem to be very accurate and comparable with the ones performed by Greer. 
However, it must be stressed that we use a global equation which only depends on 
three parameters, namely the critical temperature, the amplitude of the leading power 

Table 1. Results of fit to the differences of volume fractions in the coexisting phases of the 
isobutyric acid-water system. Data refer to the two runs reported in Greer (1976). xs 
and are respectively the normalised chi-squared and the average standard deviation of 
A 4  (Bevington 1969). 

Run 1 Run 2 

T C  (25.9967 10.0012)"C (25.9697+0.0011) "C 
G 0.2781 0,023 0.365 * 0.038 
Iv, 0,572i0.080 0.521*0.090 
X .  1.59 1.21 
a 7.68 x 1 0 - ~  6 . 7 0 ~  

f The definition of pee IS  mistaken in de Pasquale and Tonibesi (1977). In equation (3.4a) one should read 
0;; instead of Pen. 
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of t and the parameter which determines all the non-asymptotic correction terms; 
whereas in the analysis of Greer (1976), the number of free parameters increases on 
adding correction terms to the simple scaling form. 

The  main difference between our approach and Greer’s is in the already stated fact- 
that we think that the corrections to the leading behaviour are noticeable even in this 
case, where the maximum distance from the critical point is of the order O n  the 
contrary the conclusion reached in the previous analysis of the same data is that n c  
additional term is necessary to the leading behaviour. 

In order to test this fact, as we noted in the introduction, we made an F-test 
(Bevington 1969) to establish the need for  these corrections. W e  fixed the critical 
temperatures of the two runs and the critical indices @ and A1 and performed a test on 
the necessity of adding further terms to the leading one. The indices were fixed at the 
already quoted values recently obtained in three dimensions with renormalisation 
group techniques (Le Guillou and Zinn-Justin 1977), which should be among the best 
available estimates. The F-test gives the following results. For run 1 the inclusion of 
the first correction term is justified with a 99% probability (i.e. this is the probability 
that the ,yt is not decreased by chance) and the inclusion of the second term is justified 
with 28% probability. For the second run the corresponding probabilities are 80% 
and 6 0 % .  

The  reason for the disagreement between our analysis and Greer’s can, in our 
opinion, be understood considering that she fitted both the critical index p and the 
amplitudes of the scaling and correction terms. The  effect of this procedure is less 
evident in the case of the isobutyric acid-water system, where the data are confined to 
a small range, but i t  is apparent in Greer’s analysis of the data of Gopal et a1 (1973) on 
the carbon disulphide-nitromethane system which extend up to -t = 0.2. In this case 
there is a definite decrease of p from 0.352 to 0.306 and at the same time the various 
amplitudes d o  not show a tendency to remain constant when adding correction t e r r s .  
We  think this shows that the fitting procedure introduces an effective critical index. 

The  analysis of Ley-Koo and Green (1977) does not show this phenomenon, since 
they increase the range of the data together with the number of correction terms. In 
this way they succeed in obtaining stable values of /3 and the amplitudes. W e  observe 
that the indices thus obtained are quite close to the calculated ones, so that it looks 
natural to fix their values and fit only the amplitudes. This has been done recently for 
steam by Balfour et a1 (1978). 

Our results are shown in figures 1 to 5. Figures 1 and 2 show the experimental 
data and the fitted coexistence curves; figure 3 shows the associated deviation plot for 
the two runs. Figure 4 exhibits a first indication of the deviation from a simple power 
law (lower curve) in the universal plot ( t* ,  Ac$*). This deviation is confirmed in figure 
5 using the scaling variables x and y ;  in this plot a horizontal line starting from y = 1 
would represent true asymptotic behaviour, the straight line y = 1 + X  represents the 
first correction to i t  and the lower curve our model. Fimlly, figure 6 shows the 
variation of Pcfl in the actual range of temperatures considered. O n e  can see a 
maximum variation of Pefl of the order of 3 0 % .  In order to check this unexpected 
behaviour we estimated Pefi for the already mentioned fit with fixed P = 0.325 and 
A I  = 0.493 and a single correction term. We  get a maximum value of the order of 0.40 
in good agreement with our result. 

Finally, we must note that the average value of ,Bee over the range of temperatures 
we considered is of the order of 0.34, i.e. the order of magnitude usually found wherl 
fitting a simple power law up to the non-asymptotic region. 



2040 F d e  Pasquale, P Tartaglia and P Tombesi 

i y  

1 4  
2 1 0 

T , - T  I 'Ci 

Figure 1. Coexistence curve of isobutyric acid-water: difference in volume fraction of the 
two phases as a function of temperature for run 1 (Greer 1976). The full curve is our fitted 
equation of state. T, = 25.997 "C. 

i 
F - T I'C 1 

Figure 2. Coexistence curve for run  2 (Greer 1976). See figure 1. T,= 25.970 'C. 

3- 
i i 

e 

e e .  

Figure 3. Deviation plot for the two runs (0, run  1; W, run 2). The abscissa is Ig[(T,- 
T ) /  T,] and the ordinate (A&exD-  Adrh)/u, where uz is the estimated standard deviation 
for each point. 
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Figure 4. Universal plot (0, run 1; B, run 2)  in the variables f* and A 4 *  defined in the 
text. The lower curve is a single power law with p = 0.3, the upper curve our fitted 
equation of state. 

T 

1 E r ro r  
111 1 

Y -  

I - , 
, 1 

OL 0 01 0 03 0 05 
X 

Figure 5. Universal plot (0. run 1; M, run 2 )  in the variables x and y defined in the text. 
The upper curve IS the first non-scaling correction y = 1 + x ;  the lower curve our fitted 
equation of state. 

---_L _--A 

-5 -1 -3 -2 
ig [IT, - r T- i 

Figure 6. Variation of Pee for the two runs. 

4. Discussion and summary 

The most recent approach to critical phenomena in fluids seems to be successful in 
overcoming the difficulties of connecting their behaviour to that of an Ising system. 
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The new strategy consists in assuming the validity of the theoretically estimated 
indices and explaining the apparent discrepancies, which arises when considering only 
asymptotically valid power laws, with the addition of non-scaling correction terms, i.e. 
fitting only the amplitudes of these terms (Balfour et a1 1978, Sengers and Moldover 
1978). Moreover it seems by now widely accepted that these corrections are 
important both in restricted ranges around the critical point and far from it, where 
there are indications that the system should be described by a van der Waals equation 
of state (de Pasquale et a1 1976, Ley-Koo and Green 1977). IJnfortunately the 
calculation of the amplitude of the non-asymptotic terms and the resummation of the 
Wegner expansion to describe the global behaviour of fluids has not yet been made 
with the accuracy that the renormalisation group has achieved in the case of critical 
exponents. 

The main advantage of our model is to describe the global behaviour between 
critical and classical regimes in terms of only three parameters. In other words, we 
calculate on the same footing both the critical indices and the crossover function. The 
success of the analysis of S: 3 makes us confident that our approach is in the right 
direction. 

In conclusion, the challenging problem, from the theoretical side, is to determine 
the structure of the crossover consistent with the accurately known critical indices. 
Our model is a first attempt in this direction; its limitations are apparent because our 
critical exponents are quite far from the ‘true’ ones. The next step, in the context of 
the skeleton expansion approach, would be to improve our evaluation of the critical 
exponents and the structure of the crossover function. From the experimental point of 
view one gets the natural suggestion to extend the range of the data in order to have a 
complete understanding of the critical phenomena. 
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